MSA for Polymer Simulations: Optimizing GPU and CPU Simulations of MExMeMo

Adel Dabah, Andreas Herten

Jülich Supercomputing Centre, Forschungszentrum Jülich, DE a.dabah@fz-juelich.de, a.herten@fz-juelich.de

Motivation and Introduction

MExMeMo: Combine continuum and particle dynamic methods to create a super-simulation using Modular Supercomputing Architecture (MSA).

- Particle dynamic methods: tracking individual particles → highaccuracy; however, computationally demanding, limited scalability!
- Continuum methods: averaged results → efficiency and scalability; however, loss of accuracy.
- ⇒ Couple both methods for best of both worlds!
- · Providing a digital twin for the fabrication and optimization of polymers.

JSC: Enable workloads on heterogeneous architecture, build *coordinator*

SOMA Particle dynamic method, uses GPUs, JUWELS Booster.

DCAT Continuum model, uses the CPUs, JUWELS Cluster.

⇒ Optimize the different applications; enable standard data exchange protocol for coupled applications.

1) MExMeMo Simplified Model

Figure 1: Basic MExMeMo model with one particle-based model instance on JUWELS booster.

2) Scalability of Continuum Model (DCAT)

- DCAT Large-scale simulation framework for polymer fabrication process (JUWELS Cluster).
- Enabling FMA instructions for FFT libraries.
- Generate training data for the machine-learning model.
- Using a standard format for exchanging data with the particle-based model.

Figure 2: Good scalability of continuum model (DCAT) with number of nodes of JUWELS Cluster.

3) Performance Optimization of SOMA

SOMA GPU-based particle simulation developed at Uni Göttingen [1, 2]

- SOMA performance is limited by memory throughput, which we improved 2x.
- Time-to-solution improved 1.6× (Timesteps per Second, TPS).
- New hardware technology (H100): 2.2× (vs. SOMA baseline).
- Power consumption reduced 3×, 95 000 J → 26 000 J.
- \Rightarrow 18 TPS/MJ \rightarrow 135 TPS/MJ (7.5×)

4) Future Road-map

- Design of a machine-learning solution for defects detection.
- Decision framework for scheduling and monitoring compute resources
 ⇒ Reduce time-to-solution/energy-to-solution.
- · Vertical integration of simulation results with membrane fabrication.

Acknowledgment, References

MExMeMo is funded by the *Bundesministerium für Bildung und Forschung (BMBF)* under grant 16ME0660. BMBF receives funds by the European Union - NextGenerationEU.

- (1) L. Schneider and M. Müller, *Comput. Phys. Commun.*, 2019, **235**, 463–476.
- (2) M. Mueller and N. Blagojevic, Bull. Am. Phys. Soc., 2023.